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On the mathematical structure of thermodynamics
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(Received 1 July 1997; accepted for publication 19 November)1999

A mathematically exact dynamical theory of classical thermodynamics of homoge-
neous bodies is presented in which processes are time-dependent functions, gov-
erned by an ordinary differential equation. The fundamental objects of the math-
ematical structure of a thermodynamical system are the dynamical law, the
thermodynamical force, and the constraints; all the other usual notions, too, such as
substances, bodies, linear approximation by Onsager, etc. have got a mathematical
definition. Equilibria are the constant processes; their stability is investigated by
Lyapunov’s method. ©2000 American Institute of Physics.

[S0022-24880)01304-9

I. INTRODUCTION

Classical mechanics is based on the Newtonian equation and constraints that define the pro-
cesses unambiguously; then classical mechanics becomes an elegant mathematical theory by the
use of contact or symplectic manifolds. Quantum mechanics is based on theliBghrequation
that defines the processes unambigously; Hilbert spac€s’ algebras offer a complete math-
ematical formulation of quantum mechanics. Classical electrodynamics is based on the Maxwell
equations that define processes unambiguously; differential forms on manifolds admit a nice
mathematical formulation of classical electrodynamics. Contintimeversible thermodynamics
is based on the balance equations, partial differential equations that define processes unambigu-
ously by boundary conditions and initial values.

All these theories are mathematically well defined and have a clear mathematical structure; the
physical notions have an exact mathematical definition.

Classical(equilibrium) thermodynamics is a theory to which—at present—no clear math-
ematical structure is assigned and many physical notions are intuitive ones without a mathematical
definition, e.g., equilibrium, processes, reversible, irreversible, quasistatic, trend to equilibrium. It
is well known how intuitive notions can mislead (Richard parado@), which can be demon-
strated by an excellent example taken from thermodynamics, too. In usual treatments of thermo-
dynamics one “proves” that the Kelvin—Planck formulation and the Clausius formulation of the
second law are equivalehta rigorous mathematical examination shows, however, that the
Kelvin—Planck formulation follows at once if the heating has an integrating factor and thus does
not necessarily presume or imply thermodynamic axioms of any %ind.

Several attempts have been made for a mathematically correct theory of thermodynamics,
starting from different points of view:* Though some relations have been clarified and obtained
an elegant form, the whole theory cannot be treated in those ways satisfactorily. The reason is the
following. The physical theories enumerated above—in particular, continuum thermodynamics—
aredynamical theoriesthey describe what will happen under given circumstances. On the con-
trary, in spite of its name, classical thermodynamics—either in its usual treatments or in the
mentioned mathematical approaches—does not involve dynamics.

In order to have a satisfactory formulation and to find a convenient mathematical structure of
thermodynamics, we must establish a dynamical theory in which processes are described by a
differential equation. We know that the Onsager formalism describes nonequilibrium processes
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near equilibria and the relation between forces and fluxes outlines a strong mathematical structure.
However, the Onsager formalism is only a linear approximation, and the approximation procedure
is not well clarified from a mathematical point of view.

Recently a nonlinear theory has been propdéetf, called ordinary thermodynamigsin
which the fundamental notion is the process governed by an ordinary differential equation called
the dynamical law; thus processes, solutions of the dynamical equation, are functions in time.
Equilibria are constant processes. The well-defined linear approximation of the dynamical law
gives the usual Onsager formalism in special cases.

To clarify the physical meaning of ordinary thermodynamics, we make the following com-
ments; further details can be found in Ref. 14.

Let us consider a continuous medium consisting of identical, spinless, chargeless particles. A
process of such a medium is the field €,v), the velocity, the specific internal energy, and the
specific volume as functions defined in space—time. If the body force and the body heating are
taken to be zero, then the balances of momentum, energy, and mass vyield the partial differential
equations,

D,u=-vV-P,
D,e=—v(V-k+P:Vu),
Dw=vV-uy,

whereD , denotes the the “substantial time derivative” with respect to the velocity fieldand
P are the heating flux and the pressure tensor, respectively, given by constitutive relations as
functionals of (,e,v).

The processy,e,v) can be determined, at least in theory, from initial and boundary values by
these balance equations that form a complete dynamical law.

In ordinary thermodynamics we consider the bodies as homogeneous i.e., all quantities de-
pend only on time, not on space. Let us insert the conditdos-0,Ve=0,Vv=0,Vk=0,VP
=0 into the equations of continuum thermodynamics; we find that the quantities do not depend on
time either, that is, nothing happens. There is no nonconstant homogeneous poyd@ssry
thermodynamics cannot be obtained from continuum thermodynamics as a specid?edwsgps
one could even say then that the theory of homogeneous bodies is meaningless, because it is an
experimental fact as well that bodies out of equilibrium are never homogeneous; for example, the
temperature of a cooling body is always lower on the surface than in the interior of the body.
However, we know as well that a rigid body does not exist: all bodies are deformed under forces;
still, certain bodies in certain circumstances can be considered as rigid. The rigid body model is
simple, much simpler than the model of deformable bodies, and it is suitable for many purposes.
Similarly, ordinary thermodynamics offers simpler models than continuum thermodynamics and
they are applicable for a large class of phenomena. The theory of ordinary thermodynamics gives
a good approximation when the inner motion of the bodies is insignificant, and it has the advan-
tage that we can use ordinary differential equations that are much simpler than partial differential
equations. Of course, the homogeneous model is rougher than the continuum model; however, it
derives results in several questions where the continuum theory seems useless because of its
complexity.

A similar point of view is accepted in the theory of chemical reactions that are mostly
described by ordinary differential equatiéhé® as if the materials in chemical reactions were
homogeneous though, evidently, they are far from being homogeneous. Nevertheless, a lot of
basic features of chemical reactions are well reflected in such a description. Some other properties,
of course, can be deduced only from a continuum thédfhen comparing the results we can see
clearly where the inhomogeneity plays a fundamental role. In reaction kinetics the differential
equations concern only the concentrations, that is, only the concentrations are considered as
dynamic variables; thermodynamical properties of reactions are taken into account in another way.
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The theory of chemical reactions in ordinary thermodynamics involves the dynamical description
of all thermodynamical quantities, so it is an extension of usual reaction kinetics.

Ordinary thermodynamics was formulated and applied in Refs. 14—18 to particular systems of
homogeneous bodigsne body in an environment, interacting bodies, phase transitibiasv a
general mathematical framework will be given and investigated for systems consisting of single-
component bodies. Sections Il and Il are devoted to the basic notions; Definition 5 includes all the
special systems considered in the earlier papers and can be applied for diffusion processes as well
that have not yet been treated. The thorough examination of thermodynamic forces leads us to the
conclusion that we have to make a clear distinction between nominal forces and effective forces,
and suggests how we have to formalize constraints, which is one of the main results of the present
paper. In Sec. IV, we present the abstract mathematical structure of ordinary thermodynamics,
which can be summarized briefly as follows. There are given an open subset of a vectdtlspace
set of states a covector field on the set of statéhe nominal thermodynamical forgea vector
field on the set of stategshe dynamical quantitiessatisfying some conditions, the most important
of which is the dissipative property; and a subspace field on the set of &tatesonstraint

The effective thermodynamical force is the restriction of the nominal force onto the constraint
subspaces; the dynamical quantities determine the dynamical law, a differential equation whose
solutions are the processes. The fundamental properties of this structure are demonstrated in Sec.
IV. In Sec. V general theorems on the stability of equilibria are proved.

Il. SUBSTANCES, PHASES, BODIES

Let us recapitulate the most important notions and results indispensable for the mathematical
treatment.

To have a mathematically exact and unambiguous formulation, we shall take into account the
“physical dimension” of the quantities that will be measured in S| units. For instance, the values
of energy are real multiples af=Joule, i.e., they are elements of

(J):={ad|aeR}.

Similarly, we shall use the notationsif) *, (K)* for the (positive) values of volume, temperature,
etc. An exact mathematical meaning can be given the product and quotient of units of
measurement&.g., toJ/K).

For the sake of perspicuity, here we shall consider the mathematical description of single-
component materials. A generalization to multicomponent materials is straightforward from a
conceptual point of viewbut its composition is more complicated

The attribute “specific” will mean “per particle”(molecule.

Definition 1: A single-component substarisea quintet(D,T,P,u,R), where

(i) D, called theconstitutive domainis a nonvoid subset ofl) * x (m3) *; the first and second
variables inD (usually denoted by andv, respectively, are thespecific internal energgnd the
specific volumerespectively; the elements Bf are calledstatesof the substance;

(i) T:D—(K)", thetemperature P:D— (Pa), the pressure u:D— (J), the chemical poten-
tial, the constitutive functionsare continuous.

(lii) R, theregular constitutive domaijrthe subset oD on which the constitutive functions are
continuously differentiable and

aT IP T 9P IT
—>0, — —— ——<0, (1)
Je Jdv de de dv
holds is an open set denseln
Definition 2: Let (D,T,P,u,R) be a single-component substance. Then
et+P(e,v)v—m(ev
SD—(IIK), (e, &I pED) @

T(ev)
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is the specific entropyThe substance is calleshtropicif Ds=(1/T,P/T) on the regular domain.

Here and in the following D denotes the derivative of functions.

Note that if the substance is entropic then the specific entropy is twice continuously differen-
tiable on the regular domain and its second derivative is negative-definite.

Definition 3: A phaseof a single-component substanc®,T,P,«,R) is a connected open
subsetZ of R such that(i) (T,P) is injective onZ.

(il) Z is maximal with this propertyi.e., if N is a connected open subsetR€ontainingZ and
(T,P) is injective onN, thenN=2).

Proposition 1: Every point of the regular domain is in a pha$e

The injectivity of (T,P) in a phase implies that there the specific internal energy and the
specific volume can be given as functions of temperature and pressure. In particular, to every
phaseZ we can define the chemical potential of the phase by

pz=pe((T,P)|2) % ©)

The phase connectiorgstransitions”) have been examined and classified in Ref. 17.

A body means a certain amount of a substance: the triplet of variablegN) describes a
body where é,v) is an element of the constitutive domain aNdis the particle number, an
arbitrary positive number.

Definition 4: A body consisting of a single-component substand®, T,P,u,R) is (D
XR*,T,P,u,R); the elements oD X R* are called thestatesof the body.

It turns out that the description of processes of bodies in which mass varies will be simpler if
instead of the variables andv we use thetotal internal energy Eand thetotal volume V,
respectively. More precisely, we establish the smooth bijection,

()X (M) XRY —(I) "X (m*) " xR,
(e,0,N)—~(Ne,Nv,N)=:(E,V,N),
whose inverse,
(E,V,N)—(E/N,V/N,N),

is smooth as well.
We find convenient to introduce the notation

R**H:={(Ne,Nv,N)|(e,v) e H,Ne R"}, 4)

for an arbitrary subsetl of D.
Using the variablesH,V,N), we define

T(E,V,N):=T(E/N,VIN), (5)

and similar expressions fét and iz as well. For the sake of brevity and perspicuity, an abuse of

notations will be applied further on: the simple symfgletc. will be written instead of, etc.,
i.e., two different functions will be denoted by the same letter. Then we easily derive that

or 14T T 14T

E Nde N Nav ®

holds onR**R, where, according to the previously accepted abuse of notations, it is understood
that the variables on the left-hand side and on the right-hand sideEkeN) and ,v)
=(E/N,VIN), respectively. Moreover, we have
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aT EJT VIT

N~ NZE Nav' @
and similar formulas foP and u as well.
For thetotal entropy
S(E,V,N):=Ns(E/N,V/N), (8)
we get the usual equalities if the substance is entropic:
S 1 IS P IS pu g
BTN T N T ®
Then the second derivative of the total entropy is
aT aT aT
JE Y N
DS 1 b aT - JP P&T T JP b aT - P ”
| PETTE PN T PN | (10
aT m aT m aT im

p—=FT = —p—+T— —p—+T—
PETTE PuTTov PantTon

Proposition 2:D?S(E,V,N) is negative semidefinite for alE,V,N) e R**R, having a one-
dimensional kernel spanned Bi,V,N).

As usual, we call energy, volume, and massekensive variablesemperature, pressure, and
chemical potential théntensive variables

[lI. AN OUTLINE OF ORDINARY THERMODYNAMICS

A. Heuristic considerations

In this paragraph we use rather loose notations.

The state of a body is the tripleE(V,N); a process of a body is a function that assigns states
to instantst— (E(t),V(t),N(t)). We assume that the domain of a process is a time interval.

The first law of thermodynamics is expressed in the form

E=Q+W+L,

whereQ is theheating, Wis theworking andL is thetransferring this last quantity expresses the
energy change of the body due to the particle change. The quantities on the right-hand side of the
equation are time rates, thus, e.g., the heating is the heat per unit time; working is the work per
unit time.

We shall deal with the ideal case only, i.e., when

W=-PV, L=uN.
The first law is conceived as a differential equation. Of course, this single equation is not

sufficient to determine processes consisting of three functions. Therefore we suppose that we have
equations for the time change ¥fandN as well:
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whereF andG are called thespringingand theconverting respectively. The quantitie3, W, L,
F, andG are supposed to be given as functions of the sta{® (N); so we have a complete set
of differential equations.
If n=2 bodies interact, then a process of the system of interacting bodies is the joint of the
processes of the bodies= ((E;(t),V;(t),N;(t)[i=1,...n).
The processes are supposed to be governed by a system of differential equations,

Ei:Qi+Wi+Li! Vi:Fi Ni:Gi!
(Wiz_PiFiv Li=,LLiGi, |=1,n),

called thedynamical law where theth heatingQ; , etc. are given as functions of the states. Later
we examine the properties of these functions.

The bodies can be in contact with an environment, which may be thought as an “infinitely
large” body whose process is prefixéelg., its temperature and pressure is congtaritose state
does not change in the interacti@re., the environment acts on the bodies, the bodies do not act
on the environment This means that the environment is always characterized by its given tem-
peratureT,, pressureP,, and chemical potentigk,, which can vary with time.

The heating of a body consists of the heatings from the other bodies and from the environ-
ment, so

Qi=> Qu,
e

where the subscript O refers to the environment. Similarly, we have

n n
Fi=> Fi, Gi=> Gy,
e =)

n

n
W, > Wi, Li=> L.
k=0 k=0
It is convenient to introduce the notation
n
Ai=Qikt Wikt Lik, A ’ZIZO Aik -

Qix . etc. are called theystem constitutive functioms the dynamical quantities

Evidently, the particle number passed from ttiebody to thekth body is the opposite to the
particle number passed from théh body to theith body, and a similar statement is true for the
energy change and volume change of tiie body due to thekth body. Thus we accept—
roughly—thatA; = — Ay, Fix=—Fyi, Gik= — Gy . The exact formulation of these requirements
will be given later.

We underline that the heatings need not have the above property, which is a well-known fact
in classical thermodynamics: the “noncompensated heat@g™+ Q,; is not necessarily zero. A
similar remark is valid for workings and transferrings.

It is reasonable to supposas it is done in mechanics, tpthat the interaction of two bodies
can be characterized by the properties of the two bodies only, which means that the dynamical
guantities between two bodies depend only on the stats on the extensive variablesf the
two bodies. Moreover, according to our experience, we accept that the dynamical quantities
depend on the extensive variables through the intensive variables and the particle numbers. Since
the intensive variables do not characterize the stite same intensive values can belong to
different states in different phageshe dynamical quantities depend on phases, too, which corre-
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sponds to a trivial experimental fact: the heat conduction at a given temperature and pressure
between two ice bodies is different from that between two water bodies.

The second law must be reflected in the properties of the dynamical quantities. The dissipative
inequality (Clausius—Duhem inequalityn nonequilibrium thermodynamics expresses the second
law (positive entropy production an analogon of this exact relation can be well defined in
ordinary thermodynamics, tdS.

B. Thermodynamical systems

On the base of the heuristic considerations of the previous paragraph we can formulate an
exact definition.

Definition 5: Let n be a given positive integeA thermodynamical systeof n bodies in a
given environment consists of the following.

(1) A family of simple substancesD(,T;,P,,u;,R;) (i=0,...n); the zeroth substance is
called the environment; the body corresponding toithesubstance is called théh body of the
system.

(2) A given phaseZ, of the environment, and the given temperature and pressure of the
environment, as a continuous function defined on a time intetvalfT(t),P.(t)) e (To,Pg)

[20](.3) The dynamical quantitiesgiven for all phaseZ; and Z, of the ith and thekth body
(i,k=0,1,...n), respectively,
Qzz, DX P—(Ils), Fzz7 PiX D= (M%), Gzz7,: PiX P —(1/9), (11)
where
®;:=(T;,P)[ZNDXR"; (12

these functions are continuous; moreover, they are continuously differentiable on the interior of
their domain.

The dynamical quantities satisfy for alk=0,1,...n.

(i) The compatibility property in Z, and inrzﬁ, etc. are equal on the intersection of their

domain for all phaseg;, Z{ andZz,, Z,; furthermore, with the notations

Wz,z (Ti,Pi N, T, P, Ni) := = PiFz, 7 (Ti , P, Ni , Tie, Py, Nio),
inzk‘Z(Ti PN T, P Ny ’ZMzi(Ti PDGiK(Ti PiuN;i T, P, Ny),

Azz,:=Qzz,*Wzz tLzz,
and then(for the sake of brevitywith the subscriptsk instead ofZ;Z, and
[i,Kk]:=(T;i,Pi N Ty, P, Ny € Py X Dy,

the dynamical quantities satisfy the following.
(i) The mutuality property

Ai([i, kD) =—Ai([k,i]), Fi([i,kD==Fq(kiD, Gi([i,k])==Gy([k,i]). (13
(iii) The dissipative property

(0K Wi ([i,k]) Lik([i,K])
— —Q k(_E_Ii ! (Ti—Tw— —k(F[,: ] (Pi—Pp— —Milz(-'EiI,P]i) (i (T, P) = (T, Pe))=0,
(14
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where equality holds if and only ®;([i,k])=0, W, ([i,k])=0, L;([i,k])=0; this inequality
can be rewritten in the form

. 1 1 . Pi Py . —1i(Ti,Pi) (T, Pyo)
Aik(['yk])(-l-_i_ T_k) +Fik([|ak])<-|-_i_ T_k) +Gik([|ak])( T, + T, =0,
(15
where equality holds if and only i, ([i,k])=0, F([i,k])=0, G ([i,k])=0.
(4) The dynamical law,
Ei:Qi+Wi+Li Vi:Fi! Ni:Gi (lzl,n), (16)
where
Q=2 Q. Wi=> Wi, Li=2X Ly,
e k=0 k=0
Fi=> Fi, Gi=> Gy,
k=0 =0
and
Qik=Qz,z, (Ti(E;, Vi, Ni), Pi(E; Vi ,Ni) Ni, Ti(Ex, Vie, Nio) . Pul(ExVie ,Ni) , Ni),
if k#0 and

Qio=Qzz,(Ti(E; ,Vi,Ni),Pi,(Ei,Vi,Ni),N;, Ta, P4, No),

etc., whereZ; andZ, are the phases whose closure contal®gN;,V;/N;) and E,/N,,V,/Ny),
respectively.

Remarks:The dynamical quantities with subscripts @o not appear in the dynamical law,
thus they are superfluous; we involved them only for an economic formulation. If the the dynami-
cal quantities with subscripted are given, puttinngozi([O],[i]):=—inzo([i],[0]), etc. we
make all the requirements satisfied.

The particle numbeN, of the environment is irrelevant to the interactithe environment is
“infinitely large” ), the dynamical quantities do not depend Np; it is involved as a dummy
variable only for an economic formulation.

The dynamical quantities with subscriptisare zero by the mutuality property.

The condition imposed on the equality in the dissipative property is a strong requirement for
the dynamical quantities, because equality holds evidentll; #T,, P;=Py, and u;(T;,P;)
= u (Tk,Py), so these relations must imply that the dynamical quantities take the zero value.

Since all the bodies are supposed to be single component, it is understood(ﬂﬁtk#O
then the substance of th#éh body coincides with that of thieth body.

Definition 6: A constant solution of the dynamical law—i.e., a state at which the right-hand
side of the dynamical law takes a zero value—is calletisadstill A standstill is arequilibrium
if all the dynamical quantities take a zero value at the corresponding state.

Proposition 3: If at least one of the dynamical quantities does depend on the process of the
environment, then standstill can exist only if the process of the environment is constant

C. Thermodynamical forces and the conductivity matrix

For the sake of brevity, in the following the subscrigtZ, will be substituted byk.
The coefficients of the dynamical quantities in the dissipative inequdlyare known as the
thermodynamical forces; more precisely, we accept the following definition.
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Definition 7: The function

1 1 Pi PK ﬂ_’_ﬂ

i N S n. N +
TTTTTTOTT T, ‘DX D — (1K) X (Pa/K) X (JIK),

is called thethermodynamical forcéetween thath andkth body.
Definition 8: The dynamical quantitie®;, ,F;. ,Gix are calledquasilinearif

1 1
T T«
Qix Nik ki Pk b p
Fik | =| @k Bk 7k T—_I— T_:: , (17)
Gik ) ) . :
Pl Tk @ik ~ Mi(T5,PY) N (T, Py)
Ti Ty

where\;,, etc. are continuous function defined ®&nx ®,. Equivalently,

1 1
- . T T«
Ai Nk Kik Uik
P, Py
Fik |=| ak Bik 7 T, , (18
Gik Lo _ '
Pik e Pk _ wmi(Ti,Py) " (T, Py)
T Ty

where

Nik=Nik= Piaict mipi,  Kik=kik—PiBikt 1o,  Fik=0ik—Pi¥ik T KiPik -

The matrix vector on the right-hand side of equalify8) is called theconductivity matrix
between thath and thekth body.

Note that the conductivity matrix is, in fact, a matrix-valued function. It is a simple fact that
the conductivity matrix is not uniquely defined. To see this, it suffices to show that

1 1
- - T T
N kD Lok
Pi_ P =0 19
[e4 B 7 Ti Tk — Y ( )
pooe _Mi(Ti,Pi)+ﬂk(Tk,Pk)
Ti Ty

can hold if the matrix above—which represents the difference of two conductivity matrices—is

not zero. This is the case, for example\if=P;/T;— P, /Ty, %:=—1/T;+1/T, and the other
entries are zero.

Of course, if the conductivity matrix is constant then it is uniquely determined.

Proposition 4: Suppose (19) holds and the bodies are entropig;(T,P) = u(T,P), then
we have

X(T,P,Ni ,T,P,Ny) +%(T,P,N; ,T,P,Nk)P+T9(T,P,Ni J T, PN (ui(T,P)+Ts(T,P))=0,

a(T,P,N;, T,P,N)+B(T,P,N;,T,P,N )P+ ¥T,P,N; , T,P,Ny) (i (T,P)+Ts(T,P))=0,
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p(T,P,N;,T,P,N)+o(T,P,N;,T,P,N)+ o(T,P,N; , T,P,N ) (i (T,P)+s(T,P)T)=0,
®(T,P,N; , T,P,N,) — HT,P,N;, T,P,NV;(T,P)=0,
B(T,P,N; , T,P,N)—v(T,P,N;, T,P,N)Vi(T,P)=0,
o(T,P,N;,T,P,N)—o(T,P,N;,T,P,NVi(T,P)=0,
wheres andv; are the specific entropy and the specific volume of thdéady as a function of
temperature and pressure in the corresponding phase
Proof: Let P:=P;:=P,,T:=T,#T,, divide (19) by T;—T, and take the limif;—T. Accord-
ing to our hypothesig;(T,P) = u,(T,P) and to the Gibbs—Duhem relations, we have

wi(Ti P) = u(T,P)

lim =—5(T,P),
Ti—T Ti-T
from which we infer the first three equalities. The further ones follow fibmT;:=T,, P:=Py
#P;, and
i(T,P)— (T, P
lim il i)~ il ) —Vv,(T,P).
P,—P Pi—P

O

The elementsT,P,N;,T,P,N,) € ®; X ®, for which w;(T,P)= w(T,P) holds will be called
central

We see that if the bodies cannot change particles—te=0,y=0,0=0,0=0, ¢=0—then
the values of the conductivity matrix are uniquely defined at the central values; otherwise they are
not.

Definition 9: The conductivity matrix between thi¢h andkth body is(1) strictly Onsagerian
if it is constant and symmetri¢2) Onsagerian if its every value is symmetri{8) weakly Onsa-
gerian if its values at central elements are symmetric.

Usually one considers strictly Onsagerian conductivity matrices; however, the Onsagerian
formalism is said to be a linear approximation around equilibrium, so the usual Onsager matrix
corresponds to a value of our conductivity matrix at a central element. Thus, the usual formalism
corresponds, in fact, to the weakly Onsagerian case.

It is a remarkable resdft that if a twice continuously differentiable conductivity matrix is
weakly Onsagerian then—using its nonuniqueness—we can take it to be symmetric in a neigh-
borhood of the central values.

IV. GENERAL MATHEMATICAL FORMULAS

A. The dynamical law and the nominal thermodynamical force

A state of a system consisting onfbodies,
x:=(xi==(E;,Vi,Nj)[i=1,..n), (20)
is in
n
Xpi=X(R**D)), (21)
i=1
which is a subset of the vector space,

X:=((J) X (M) X R)". (22
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Now we find it convenient to considelT instead of the temperatur€, wherek is the
Boltzmann constant. The physical dimensiorkdfis that of energy, i.ekTe (J).

The dual of a one-dimensional vector space is its “reciproéakind the duality map is the
(tensorial multiplication that is well reflected in our present notation: an element from) (1/
multiplied by an element froniJ) results in a real number. The dual of a Cartesian product is
identified with the Cartesian product of the duals by the usual rule: take the sum of the products
of the components.

Thus we have that the intensive quantities are elements in the dual space of the extensive
quantities, namely,

oy Pom(TLPOL x*=| [Z|x| =|xR n 23)
Y=Y T kT kT, e e T )
Consequently, the constitutive functions map from the state space into its dual:
V vl 1 P
Y=:Xy-==X(—,—,——)ZXHX*, (24)
ot VKT KT KT,
whose domain ip .
Using the notation
Yo:=(1KTo,Po/kTo, = uo(To,Po)/KTo) € Zy,
let us introduce
Rik(Xi ,Xi0) = (Ai s ik Gir) (Vi (%) Yie(Xi)),
(25)

Rio(Xi,Yo) :=(Aio,Fio.Gio) (Yi(Xi),Yo).

for xe Xp,i,k=1,...n.
Note that in these notations the mutuality property of the dynamical quantities becomes

Rik(Xi %) = = Ryi( X, X)) (Xe Xp,i,k=1,..n). (26)

Putting

n

R(X,Y0):=| Ri(X):=Rjo(Xi yyo)+k21 Rik(Xi ,Xk)

i=1,...n), (27)

for xe Xp andygye Zy, we can rewrite the dynamical laie6) in the form
X=R(X,Ya)- (28)
Note that ift—x(t) is a function defined in time and having values<inthenx has values in
X/s, wheres denotes “second.” ThusR(x,yo) € X/s for all x andyj.
The collection of the thermodynamical forces between the bodies and the environment will
play and important role that is why we introduce the following notion.
Definition 10: The function
FiXpXZo—X*, F(X,Yo)=(¥i(X)—Yoli =1,...0), (29)

is called thenominal thermodynamical forca the system.
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B. The dissipative property and its consequences

The dissipative property of the dynamical quantities in the previously introduced concise
notations reads as follows:

(Y(X) = Yi(X)) - Rig(Xi %) =0 (xeXp,i,k=1,..n),

(Yi(Xi) —Yo)-Rio(Xi,Yo) (XeXp,YoeZp,i=1,..n),

where equality holds if and only R;.(X; ,x,) =0 andR;y(X;,Yo) =0; the dot denotes the sum of
the product of the components.
Proposition 5: The dissipative property of the dynamical quantities imply

F(vaO)'R(leO)EO (XEXD!yOEZO)! (30)

where equality holds if and only;Kx; ,x) =0 and Rq(X;,y)=0 for all i , k=1,...n.
Proof: Let us introduce the formal quantiti€Sy(X; ,Xo) := — Roi (X0, Xi) :=Rio(Xi ,Yo), and let
us puty,:=Yy,(x,) for the sake of brevity. Then we have

(Yi— Y- Rik(Xi , x)=0 (i,k=0,1...n),

from which we infer by the mutuality property of the dynamical quantities that

1 n
0$§_2 (Yi—Yi) - Rik(Xi . %)
i,k=0
1 & 1
=5 2 (V= Yo) Ri(xi X0 = 5 2 (k= Yo)Rix(Xi Xi)
i,k=0 ik=
= 2 (Yi—Yo)- Ri(Xi ,x)
i,k=0

n n
=2 (Yi—Yo): > Ri(Xi X,
=1 k=0
where equality holds if and onlR;(X; ,x,) =0 for all i,k=0,1,...n. The last formula coincides
with the left-hand side 0€30).

Of course, equality holds R(X,y)=0; thus we have the following.

Proposition 6: Rx,yg)=0 if and only if R.(x;,x,)=0 and Ry(X;,yo)=0 for all i,k
=1,.n.

This has an interesting and important consequence.

Proposition 7: Every standstill of the dynamical law (28) is an equilibrium

Proof: There can be a standstill if and only if either all the dynamical quantities are indepen-
dent of the environment or, (the process of the environmeing constant. In both cases the state
x is a standstill if and only iR(X,y,) =0 that is equivalent by the previous result to the fact that
all the dynamical quantities take a zero valueate., x is an equilibrium.

C. The quasilinear case

Let C,, denote the conductivity matrix between th andkth body as a function of the
extensive variablef.e., putT;:=T;(E;,V;,N;), etc. in then). Then we have fox e Xy andy,
(S Zo,

Rik(Xi :Xi0) = Cie(Xi i) - (Vi (Xi) = Yi(Xi))s  Rio(Xi,¥0) = Cio(Xi,Yo) - (¥i(Xi) —Yo),

fori,k=1,...n. It follows from the mutuality property that
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Cir(Xi %) - (¥ (Xi) = Y(Xi)) = = Ciei (X, Xi) - (Vie(Xi) = Vi (%) = Cii (X, Xi) - (Vi (Xi) = Yie(Xio)),
which does not imply
Cik(Xi %) = Ci(Xi,Xi)  (XeXp,i,k=1,..0); (39
since these matrices play a role only when multipliedyh(;) — yi(X,), we do not restrict the

generality by requiring equality31).
Moreover, we have that

CiO(yi(Xi)vyO)'(yi(xi)_yo)+;l Cik(Xi ka)'(Yi(Xi)_yk(Xk)):iZl Bik(X,Y0) - (Yk(Xk) — Yo),

where

Cik(Xi, %), If i#k,

n

PO €t o+, Culxx, i =k 2
Thus, introducing
B(X,Yo) :=(Bik(X,Yo)|i,k=1,...n), (33
and using the nominal thermodynamical force define®®), we get
R(X,Y0)=B(X,Y0) - F(X,Yo), (34
and the dynamical law has the form
X=B(X,Ya) - F(X,Ya). (35

Definition 11: The functionB:Xp X Zg— Lin(X*,X/s) defined in(33) is called thenominal
conductivity matrixin the system.
Proposition 8: If G, (X; ,x,) and Go(X; ,Yo) are symmetric for all jk=1,...n for a given x and
Yo, and (31) holds, then &,yg) is symmetric as well

D. Constraints

1. Heuristic considerations

A system of interacting bodies, in general, is subjected to some constraints. As examples let
us consider the following systems.

(1) A body with a constant particle number in a given constant environment, the pressure of
the body is held constant, equaling the presstyef the environment; then

dP(E,V,N) - dP(E,V,N) V=0
’ JE NV e

(2) A heat insulated body with a constant particle number in a given environment,
N=0, E=-P(E,V,N)V. (36)
(3) A body with constant volume in a given environment,

V=0.

Downloaded 05 Apr 2013 to 134.100.220.72. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



2034 J. Math. Phys., Vol. 41, No. 4, April 2000 T. Matolcsi
(4) Two bodies that are totally insulated from the environment,
E1+E2:O, V1+V2:O, N1+N2:O (37)

The constraints are not characterized completely by the previous formulas that concern the
“fluxes,” i.e., the time derivative of the extensive variables. Constraints are intimately related to
forces, too. Namely, the real driving forces in the examples(arehe temperature difference
between the body and the environme(®) the pressure difference between the body and the
environment;(3) the temperature difference between the body and the environ(deniie tem-
perature difference, the pressure difference, and the chemical potential difference between the two
bodies.

Now we shall show how we get these real forces from the nominal one.

The nominal thermodynamical force for the examplés-(3), taken at the process of the
environment is—in a loose notation—

1 1 P Pa u pa
kT kT, kT kT, kT KT,/

(1) Equality (36) and the first lawE=Q— P,V result in that the heating is proportional to the
springing,Q= «F, thus the dynamical equation becomes

E=(a—PyF, V=F, N=O0.

The right-hand side of the equation is a multiple of the vectot,,1,0).

Let us apply the nominal thermodynamical for@s an element of the dual spade this
vector:

1 1

KT kT,

1 1 -~ Pa Pa)_
AL
We have gota multiple of the really acting thermodynamical force whose zero value deter-

mines the equilibrium if the environment is constant.

(2) In the case of a heat insulated body with a constant particle number, the right-hand side of the
dynamical law,

E=—PF, V=F, N=0,

is a multiple of the vector{ P,1,0).
Applying the nominal thermodynamical force to this vector, we get

a

| Rl e

which is (a multiple o the really acting thermodynamical force whose zero value determines
the equilibrium if the environment is constant.

(3) In this example the dyamical law has the form
E=Q+uG, V=0, N=G,

whose right-hand side is spanned by the multiple of the vedtbr9, 0 and (0, O, 1.
Applying to these vectors the nominal thermodynamical force, we get

N Y
kT kT, kT KkT.)’
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which is the really acting thermodynamical force whose zero value determines the equilibrium
if the environment is constant.

(4) In this example the dynamical law has the form
E1=Q;—P:F1+uiGy, Vi=F;, N;=Gy,

Es=Qu— PoFot uyGy, Vo=F,, N,=Gy,

moreover, relatiori37) holds; thus the right-hand side of the dynamical equation is spanned by the
multiple of the vectorg1, 0, 0,—1, 0, 0, (0, 1, 0, 0,—1, 0, and(0, O, 1, O, 0,—1). Applying to
these vectors the nominal thermodynamical force,

L1 1Pt Pa o pa 11 P Pa pe Ha
kT, kT, kT, KkT," kT; kT, kT, kT, kT, kT, kT, KkT,/)’

we get

1 1 Py P, M1 M2

KT, KT,'KT, KT,’ KT, KT,/

which is the really acting thermodynamical force whose zero value determines the equilibrium.

2. Mathematical formulation of constraints

Definition 12:We say that the dynamical lai28) is subjected to a constraint if there is a set
" of continuous mapXp— X*, such that{p(x)|peI} is linearly independent for ak e Xp ;
p(x)x=0 holds for allpeI" and for all processes[solutions of the dynamical 1ai28)], which
is equivalent to

R(X,ya) e K(X)/s (xeXp), (39
where
K(x):= N Kerp(x). (39
pel

is the constraint subspaa x; R(x,y,) =0 if and only if F(x,ya)|K(X):O.
The function

Xp—=X*,  x—=>Fp(X,Ya) :=F(X,Ya)lkx) (40)

is called theeffective thermodynamical fora@mrresponding to the constraint.

Now we apply well-known notions of the theory of manifolds.Ufis a u-dimensionalC’
submanifold inXp, then a parametrizatiofihe inverse of a local coordinatizatipof U around
Xoe U is a mapp: RY— X, such thai,e RanpCU; pis injective,p~ ! is continuousp is r times
continuously differentiable; P(x) is injective for allxe Domp.

One of the most important relations is that Rgm(k) =T, (U), where the last symbol denotes
the tangent space &f at x.

A submanifold will mean &' submanifold.

A submanifoldU in Xp is called aconstraint manifoldif T,(U)=K(x) for all xeU. A
constraint manifoldU is invariant for the dynamical law, i.e., every process starting ftdm
remains inU.

If the constraint is a foliation i.e., for every in the interior of Xp there is a(maxima)
constraint manifold containing then the interior ofXp is the disjoint union of constraint mani-
folds.
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The constraint is calletiolonom if for all pe I’ there is a®,:Xp— R, continuously differ-
entiable on the interior oKp, such thatp>D®,. Then the constraint is a foliation and the
constraint manifolds are the subsets tibatis constant on for alpeT".

If I'= then there is no constraint, i.8{(x)=X for all xe Xp, and there is a single
constraint manifold; the interior ofp .

In the quasilinear casB(X,y,)=B(X,Ya)F(X,ya) € K(X)/s does not imply, in general, that
RanB(x,y,) CK(x)/s even if F(x,y,) #0. Moreover, in generaR(x,y,) cannot be given as a
quasilinear function of the effective thermodynamical force. That is why we introduce the follow-
ing notion.

Definition 13: The nominal conductivity matrifits the constrainif for all xe Xy there is a
Br(x,ya) € Lin(K(x)*,K(x)/s), such that

B(X,Ya)F(X,Ya) =Br(X,Ya) Fr(X,Ya). (41)

In this case the map—Br(X,Y,) is called theeffective conductivity matrix

The relation between the nominal conductivity matrix and the effective conductivity matrix
can be expressed by the canonical embeddifd:K(x)—X and its transpose(x)*:X*
—K(x)* as follows:

I(X)Br(X,ya)i(x)* =B(X,ya) (X&Xp). (42

Then we have the following results.

Proposition 9: (i) The nominal conductivity matrix fits the constraint if and only if for all x
e Xp we haveRanB(x,y,) CK(x)/s andKerB(x,y,) D (K(x))°, which is equivalent to the fact
that p(x)B(X,y,) =0 and B(x,y,)p(x) =0 for all p e, where(K(x))°:={y e X*|i(x)*y=0} is
the annullator of Kx).

(ii) The nominal conductivity matrix fits the constrainR&nB(x,y,) CK(x) and B(x,y,) is
symmetric for all xe Xp .

Proof: (i) If the kernel of B(x,y,) contains the annullator df(x), thenBr(x,y,) is well
defined byBr(Xx,y,)i(X)*y:=B(X,y,)Y (y € X*); so the stated relations are sufficient. The state-
ment concerning the necesssity is trivial.

It is evident that the annullator df(x) is spanned byp(x)|peI}, thus the equivalent
statement holds true as well.

(i) If B(x,ya) is symmetric, then its kernel contains the annullator of its range.
Simple arguments prove the following statements, too.

Proposition 10: Let the nominal conductivity matrix fit the constraint and use the previous
notations. Then for all x Xp: (i) KerBp(x,y,)={0} if and only if KerB(x,y,) = (K(x))%
Br(X,Ya) is symmetric if and only if BX,y,) is symmetrig(iii) Br(X,y,) is positive semidefinite
if and only if B(X,y,) is positive semidefinite

SinceR(X,Y,) € K(x)/s, inequality (30) can be rewritten in the form

FF(lea)R(Xiya)Bo (XEXD)l (43)

where equality holds if and only iR(x,y,)=0, which is equivalent td~(x,y,)=0 by the
definition of constraints.

In the quasilinear case if the effective conductivity matrix exists then the above inequality
becomes

Fr(X,Ya)Br(X,ya)Fr(x,ya)=0 (xeXp), (44

where equality holds if and only Fr(x,y,)=0.
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E. Onasager formalism

We call the constrairaffineif every constraint subspace is the same: there is a linear subspace
K of X such thatk(x) =K for all xe Xp . The constraint is affine in the previous examples 3 and
4 and is not affine in the examples 1 and 2.

Note the important fact that the effective conductivity matrix cannot be constant if the con-
straint is not affine; indeedBr(x,y,) is a linear map fronK(x)* into K(x)/s; thus, if K(x)
#K(x") thenBy(X,ya) #Br(x',ya,).

If the constraint is affine then the effective conductivity matrix can but evidently need not be
constant.

Let us consider an affine constraint with constraint subspadest x, be an equilibrium. Put

Yo:=Y(Xo) andyz:=(Ya,....Ya). Then
0=F(Xg,Ya) k= (Yo=Y |k

consequently,

Fr(X,Ya)=Fr(x,yo) :=(y(X) = Yo)|k .

i.e., in this case the effective thermodynamical force can be expressed by the deviation of the
intensive quantities from their equilibrium values. In the quasilinear case the effective conductiv-
ity matrix Br(X,y,) mapsK into K for all x; near the equilibriunx, it can be approximated by its
equilibrium value, which is a linear map— K, too; thus the dynamical law can be approximated

by
Xx=Br(Xo,Ya)Fr(X,Yo)-

This is the usual form of the Onsager formalism: the conductivity matrix is constant, the thermo-
dynamical force is expressed by the difference between the intensive variables and their equilib-
rium values(and the fluxes correspond to the time derivatives of the extensive quantities

On the other hand, if the constraint is not affine tH%a[r(x,ya)#(y(x)—yo)|K(X), i.e., the
effective thermodynamical force cannot be expressed by the the deviation of the intensive quan-
tities from their equilibrium values. Moreover, any approximationBgf(x,y,):K(x)—K(x)/s
must be a mafK(x) —K(x)/s; thus the effective conductivity matrix cannot be approximated by
its equilibrium valueB(Xq,Ya): K(Xg) —K(Xg)/s. All these mean that the Onsger formalism does
not work for nonaffine constraints.

V. STABILITY

A. Some comments

One of the main problems of thermodynamical systems is the stability of equilibria. The
stability investigations of classical thermodynamics are not satisfactory because stability is not
defined in a mathematically exact way and, indeed, the results concern only some constitutive
properties of the substanc@strinsic stability) and do not take into account dynamical properties
(which are formulated here by the dissipative property continuum(irreversible thermody-
namics the notion of stability is defined in a mathematically exact way referring to the balance
equations; however, the investigations are very hard from a mathematical point of view because
the equations describing the processes are partial differential equ&tichs.

In ordinary thermodynamics stability investigations are based on mathematically correct no-
tions, and are much more easier than in continuum thermodynamics because here ordinary differ-
ential equations govern the processes. Trend to equilibrium—a fundamental concept—corresponds
to the asymptotic stability of equilibria.
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B. Notions and results from the theory of stability

For the sake of simplicity, from now on we omj, from the notations of the functions
introduced up to now, i.e., we writR(x), B(x), F(x), etc. instead ofR(X,y,), B(X,Ya),
F(X,y,), etc.; then, in particular, the dynamical law has the form

X=R(X).

Recall thatx, is an equilibrium if and only ifR(xq) =0.
Definition 14:Let U be a subset invariant for the dynamical equatiomparticular, a con-
straint manifold.

(1) An equilibriumxge U is stable with condition Uf for each neighborhoo®l of x, there is a
neighborhoodS of x, such that for every process starting fr@dm U proceeds ilfNNU.

(2) An equilibriumxye U is asymptotically stable with condition Wit is stable with condition
U and there is a neighborhodd of x, such that for every processstarting fromvVnu we
have lim_.. r(t) =Xg.

(3) A setECU of equilibria isstrictly asymptotically stabfé with condition Uif every equilib-
rium in E is stable with conditiorJ; every equilibrium inE has a neighborhood such that
if ris a process starting froMNU then lim_,.. r(t) is in the closure oE.

Besides the well-known and fundamental results of stability th&buye shall apply a less
common on€?® which reads in our formulation as follows.
Consider the differential equation

E=®(¢),

in RY, where® is continuously differentiable. Lex be the set of its equilibria and suppogg
there is a nontrivial linear subspaze RY, an elemena of RY such thatA = (a+Z) " Dom®; (ii)
for all §e A:—Ker D® (&) =Z,—the algebraic multiplicity and the geometric multiplicity of the
zero eigenvalue of (&) are equal—the real part of the nonzero eigenvalues ®f(§ is
negative.

ThenA is strictly asymptotically stable.

If L is a differentiable scalar-valued function definedig, thenl'_(x) :=DL(X)R(x) is called
the derivative of L along the dynamical equation

Proposition 11: Let U be a submanifold inpX invariant for the dynamical law (in particular,
a constraint manifold). If xe U is an equilibrium and there is a continuously differentiable
real-valued function L, defined in a neighborhood gf »uch that (i) L has a strict local maxi-

mum at x with condition U, i.e., [(X)<L(Xy) for all xeU in a neighborhood of ; (ii) L has a
(strict) local minimum at ¥ with condition U, then the equilibriumgxis (asymptotically) stable
with condition U

Proof: Let u be the dimension ob) and take a local parametrizatignR"— U aroundx, .
Then the restriction of the dynamical law onto the invariant submanitblé reduced to the
differential equation

E=Dp(§) 'R(P(9)), (45
for the functioné:=p ™~ tox.
Then &:=p~1(xo) is an equilibrium of the reduced dynamical equation. It is trivial that
:=Lop is a continuously differentiable function that has a strict maximurgyat
Since DA\ =(DL-p)Dp, the derivative ofA along the reduced equation,

A=(DLep)(Rep)=Lop, (46)

has a(strict) minimum até;.

Downloaded 05 Apr 2013 to 134.100.220.72. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



J. Math. Phys., Vol. 41, No. 4, April 2000 On the mathematical structure of thermodynamics 2039

These imply by Lyapunov’s theory thdt is an (asymptotically stable equilibrium of the
reduced equation from which it follows that is an (asymptotically stable equilibrium with
conditionU.

Proposition 12: Let U be a submanifold, invariant for the dynamical equation (in particular,
a constraint manifold) and let E be the set of equilibria in U. Suppose(t& is a submanifold
(2) for all x e E, the linear mapDR(x)|TX(U) ‘T, (U)—T,(U) has the following properties: (i) its
kernel is T,(E); (ii) the algebraic multiplicity and the geometric multiplicity of its zero eigenvalue
coincide (iii) its nonzero eigenvalues have negative real part

Then E is strictly asymptotically stable with condition U

Proof: Let e andu be the dimensions dE and U, respectively. There is a local parametriza-
tion p:REXRY"®*—U such thatp(-,0):R*—E is a parametrization . Then

Ran(Dp(7,0)|gex(0)=Tp(5.0(E)-
The set of equilibria of the reduced dynamical equatié®) is the manifold
p~Y(E)=Rex{0}NDomp,
whose tangent space @4, 0) equals
ReX{0}=Dp(7,0) [ Tp(0(E)]-

The derivative of the right-hand side of the reduced dynamical equation at an equiliofium
0), is

D(#,0):=Dp(7,0) *DR(p(%,0))Dp(7.,0).

As a consequence, the spectral propertie® (0f,0) coincide with those oD R(p(#,0)) (i.e.,
they have the same eigenvalues and multiplicitiesoreover,

KerD(#,0)=(Dp(7,0)) Y[Ker DR(p(75,0))]=Rex{0}.

Thus, according to the theorem cited above, the set of equilibria of the reduced dynamical equa-
tion is strictly asymptotically stable, which implies that our assertion is true.

C. Stability in ordinary thermodynamics

There are nice stability results for several phenomena, including phase tran&tenRefs.
14-19. It is remarkable that some of them is obtained without the use of entropy. The entropic
property, however, admits general results on stability.

The entropy of the environment—in a loose notation—is

_ Eo+PoVo—1oNg
To )

The total energy, the total volume and the total particle number of the bodies, and the envi-
ronment together are constant,

n n

n
> E;j=const, >, V;=const, >, N;=const.
i=o i=0 1=0

Let us suppose that the temperatlitg the pressur®, (thus the chemical potential, , t00),
in the given process of the environment are constartich is a necessary condition of the
existence of equilibrium if at least one of the dynamical quantities is not independent of the
environment Then
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L==_§ s Ei+Pa\T/i—uaNi
i=1 a

is the total entropy of the bodies and the environment together, up to an additive constant.
Using the notations introduced previously, we can write the above function in the form

n
LOO=2, (S =YaX)  (XeXp). 47
Further on we refer frequently to the set of states corresponding to the regular domains:

Xgi= X (RT*Ry). (48)
i=1

Suppose the bodies of the thermodynamical system are entropicLTitéwice differentiable
on Xg; the derivative ofL equals the nominal thermodynamical force,

DL(x)=F(x), (49

for xe Xg. Moreover,

DZL(x>=Zl D2S(x) (50)

is negative semidefinite; its kernel is spanned by the vectors,00,...,0),
(0X5,0....,0)-+(0,0,0,..X,).

Proposition 13: Let U be a constraint manifold and let us apply the previously introduced
notations. Let ¥ be an equilibrium in U1 Xg. If (i) the bodies are entropic; (ii) L has a strict
local maximum at x with condition U, then ¥ is asymptotically stable with condition.U

Proof: Condition (ii) implies thatx, has a neighborhood in whicﬁp(x)zzDL(x)|Tx(U)

#0 for Xo#Xxe U. As a consequence, the derivativelofilong the dynamical IaV\A:=(DL)R
=FR=FR has a strict local minimum at, by (43); hence we infer the desired result from
Proposition 11. O

Next, we give easily verifiable relations, which imply conditiGn and will be useful in
applications.

Proposition 14: Let the constraint manifold U be & Gubmanifold. Suppose,s an equi-
librium in UNXg and (i) Ker(DZL(xO))ﬂTXO(U)ZO; (i) there is a parametrization of U around
Xo such thatDL (xo) D?p(p~ (X)) is negative semidefinite; then L has a strict local maximum at
Xo With condition U

Proof: The functionA :=Lep is twice differentiable, and

DA(£)=DL(p(£))Dp(§), (59)

D?A(€)=D?L(p(£))°(Dp(&)x Dp(é))+DL(p(£))D*p(£), (52

for all £e Dom p.
Put &o:=p 1(X). Since xq is an equilibrium, we have D(xo)|TX =0, consequently
0

DA (&,) =0. Moreover, at= ¢, the first term on the right-hand side @&?2) is negative definite
by (i); the second one is negative semidefinite(iby, so the sum is negative definite.

As a consequence\ has a strict maximum af, that is equivalent to that has a strict
maximum atxy with conditionU. O
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Property(ii) in the previous proposition holdslif is a subset of an affine subspace; theran
be taken to be affine and its second derivative is zero.

Proposition 13 can be applied when every body has a constant particle number. Indeed, then
the third, sixth, ninth, etc. components of the elements(r) are zero, thus only the zero is both
in K(x) and in the kernel of EL(x). A similar assertion holds when everybody has constant
volume.

Asymptotic stability of an equilibrium implies that the equilibrium is locally unique. In gen-
eral, e.g., in the first-order phase transitions and in diffusions when the particle number and the
volume of the bodies changes, equilibria are not locally unique; they constitute a nonzero dimen-
sional submanifold’ Then instead of the previous proposition we can apply the following one.

Proposition 15: Let the constraint manifold U be & Gubmanifold and let E be the set of
equilibria in UNXg. If (i) the bodies are entropic, (ii) the dynamical quantities are quasilinear
and the nominal conductivity matrix fits the constraint, (iii) E is a submanifold; and for g@ll x
e E, (iv) Br(Xp) is symmetric and positive definite, (K)er(DZL(xo))ﬂTXO(U)=TXO(E), (vi)
there is a parametrization p of U aroung such thatDL (x,) D?p(p~1(x)) is negative semidefi-
nite; then E is strictly asymptotically stable with condition U

Proof: The dynamical equation is of the form

x=Bp(x)(DL)p(x)
and
E={xeU|(DL)p(x)=0}.

Let xo be an arbitrary element & and letp be a parametrization df aroundx,. Then for
the functionA :=Leop and&,:=p~1(x,) we have the equalitie&1) and(52).
The dynamical equation reduced by the parametrization becomes

E=V(£DA(&), (53

where
W (£):=Dp(£) 'Br(p(£))(Op(£)*) .
The set of equilibria of the reduced dynamical equation is
¢:={¢ e Domp|DA(¢)=0}. (59

Now we show that
T, (¢)=KerD?A(&o).

The relationC follows from (54) trivially. The relationD can be verified as follows: ip has
property(vi) andv is in the kernel of BA (&), then(52) implies that Dp(&o)v € Tpgy(U) isiin
the kernel of BL(x,), thus it is an element oTXo(E) according to propertyv); this is equivalent
to thatv e Tgo(qS).

The derivative of the right-hand side of the reduced dynamical equé®rat £, equals

W (£)D?A(&o)-

Property(iv) implies thatW (&;) is symmetric and positive definite, and according3® and
property (vi), D?A(&,) (which is necessarily symmetjiés negative semidefinite. Therefore the
kernel of W(&,)D?A (&) equals the kernel of A\ (&,), which is the tangent space dgfat &;;
and® the geometric multiplicity and the algebraic multiplicity of the zero eigenvalue of
W (&)D?A (&) coincide, all the nonzero eigenvaluesWw{ £,)D?A (£,) are negative.

As a consequence of Proposition 12, the set of equilibria of the reduced dynamical equation is
strictly asymptotically stabléwithout a condition, which implies thai is strictly asymptotically
stable with conditiorlJ.
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Property(iv) in the previous proposition is equivalent geee Proposition 10(iv) B(X) is
symmetric, positive semidefinite and IB{rxo)=TXO(U)°, which is very useful in practice.

VI. DISCUSSION

A general mathematical theory of thermodynamical systems consisting of single-component
homogenous bodies has been expounded. Substances, phases, bodies, systems, thermodynamical
forces, constraints, etc., all the usual notions have got a mathematical definition. The basic object
is the dynamical law, a differential equation whose solutions are the processes of the system.
Equilibria are the constant processes. The first law is a part of the dynamic@daw continuum
thermodynamics, where the first law is one of the balance equgtitiessecond law is expressed
by a condition imposed on the dynamical quantities, called the dissipative prépargnalogon
of the Gibbs—Duhem relation in continuum thermodynamitise dissipative property is some-
thing like positive entropy production but is formulated without the notion of entropy and can be
applied for some systems of nonentropic bodies *{d@onstraints can be treated by the notions of
manifolds. The Onsager formalism is a well-defined linear approximation of the dynamical law
around equilibrium if and only if the constraint is affine. General resultgstiict) asymptotic
stability (trend to equilibrium are obtained for a system of entropic bodies.
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